Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770101

RESUMO

Water is the most important life-giving resource on earth. Nowadays, intensive growth of the world population has resulted in increased water consumption and the production of wastewater. Additionally, the presence of pharmaceuticals in treated conventional wastewater or even in the environment is strictly indicating that present techniques of wastewater treatment are not efficient enough and are not designed to remove such pollutants. Scarce water resources in the world are the main driving force for the innovation of novel techniques of water and wastewater treatment. Photocatalysis, as one of the advanced oxidation processes, enables the transformation of recalcitrant and toxic pollutants into CO2, water, and inorganic salts. In the present paper, the photocatalytic oxidation of ß-blockers-metoprolol and propranolol-are described. For photocatalytic oxidation, novel TiO2 photocatalysts modified with biochar were used. Photocatalysts were prepared by sol-gel method and the effect of photocatalysts type, presence of inorganic ions, dissolved organic matter, and different water matrix was established. The results indicate that using only the decrease in the tested pollutant concentration is not effective enough in establishing the treatment method's safety. There is a need to use additional testing such as ecotoxicity tests; however, the key parameter is the properly chosen tested organism.

2.
Materials (Basel) ; 15(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36233949

RESUMO

The investigated polymeric matrixes consisted of epoxidized linseed oil (ELO), acrylated epoxidized soybean oil (AESO), trimethylolpropane triglycidyl ether (RD1), vanillin dimethacrylate (VDM), triarylsulfonium hexafluorophosphate salts (PI), and 2,2-dimethoxy-2-phenylacetophenone (DMPA). Linseed oil-based (ELO/PI, ELO/10RD1/PI) and soybean oil-based (AESO/VDM, AESO/VDM/DMPA) polymers were obtained by cationic and radical photopolymerization reactions, respectively. In order to improve the cross-linking density of the resulting polymers, 10 mol.% of RD1 was used as a reactive diluent in the cationic photopolymerization of ELO. In parallel, VDM was used as a plasticizer in AESO radical photopolymerization reactions. Positron annihilation lifetime spectroscopy (PALS) was used to characterize vegetable oil-based UV-cured polymers regarding their structural stability in a wide range of temperatures (120-320 K) and humidity. The polymers were used as laccase immobilization matrixes for the construction of amperometric biosensors. A direct dependence of the main operational parameters of the biosensors and microscopical characteristics of polymer matrixes (mostly on the size of free volumes and water content) was established. The biosensors are intended for the detection of trace water pollution with xenobiotics, carcinogenic substances with a very negative impact on human health. These findings will allow better predictions for novel polymers as immobilization matrixes for biosensing or biotechnology applications.

3.
Materials (Basel) ; 15(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35057182

RESUMO

A combined study of one of the simplest aromatic hydrocarbons, i.e., methylbenzene (toluene) (TOL), via the annihilation of an ortho-positronium (o-Ps) probe via positron annihilation lifetime spectroscopy (PALS) and the rotation dynamics of nitroxide spin probe 2,2,6,6-tetramethyl-piperidinyl-1-oxy (TEMPO) using electron spin resonance (ESR) over a wide temperature range, 10-300 K, is reported. The o-Ps lifetime, τ3, and the relative o-Ps intensity, I3, as a function of temperature exhibit changes defining several characteristic PALS temperatures in the slowly and rapidly cooled samples. Similarly, the spectral parameter of TEMPO mobility in TOL, 2Azz', and its correlation time, τc, reveal several effects at a set of the characteristic ESR temperatures, which were determined and compared with the PALS results. Finally, the physical origins of the changes in free volume expansion and spin probe mobility are revealed. They are reflected in a series of the mutual coincidences between the characteristic PALS and ESR temperatures and appropriate complementary thermodynamic and dynamic techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...